Friday, 11 August 2023

lluminating the Winter: The Vibrant Yellow Fungus

As the winter settles in, few fungi possess the ability to brighten up the season quite like the yellow fungus. When severe frost holds off, these fiery-hued fungi flourish brilliantly upon trees, standing out from afar with their radiant coloration.

In the midst of the dark, winter days, the forest is often deprived of vibrant hues. However, the yellow fungi adorning oaks instantly capture one's attention. Hanging from dead branches like large, wrinkled gum balls, their fruit bodies, reaching up to 10 cm in size, consist of gelatinous lobes. Surprisingly smooth and bouncy to the touch, they remain soft even in the presence of frost, almost as if they possess a natural antifreeze. Some variants deviate from yellow and boast a striking bright orange shade.

Particularly in the dunes, the yellow fungus (Tremella mesenterica) often leans more towards a flaming orange hue rather than yellow, a transformation influenced by age and moisture content. As the fungus ages, it gradually pales in color. During severe frost, it dries up and shrivels into a tough, dark orange piece of skin. Yet, after a frosty spell followed by a rain shower, it has the incredible ability to swell back to its original form, reviving its vibrant color. This resilient fungus truly showcases its tenacity.

Despite its inviting appearance, the yellow fungus is, in fact, a parasite. It draws its nourishment not from the dead wood it clings to, but from the mycelium of the oak bark fungus—an entirely different fungus that thrives on deceased oak trees. The yellow fungus consumes such a significant amount of nutrients from its host that the latter struggles to bear fruit.

While not considered an edible fungus in Europe, the yellow fungus is a sought-after delicacy in the Far East, where it is known as the "Yunnan golden fungus." In various Asian countries, it is also utilized for medicinal purposes, particularly to address lung ailments. Within its structure, the fungus harbors polysaccharides that possess properties such as cough suppression, anti-asthmatic effects, blood sugar regulation, anti-inflammatory traits, and inhibition of tumor growth.

Throughout the year, the yellow fungus can be found adorning branches of deciduous trees and shrubs, with its prevalence peaking in spring and late autumn/early winter. This captivating species is common in Belgium and the Netherlands.

Nature never ceases to surprise us with its vibrant wonders, and the yellow fungus stands as a testament to the intricacies and secrets that thrive in the heart of the forest.



Fig 1.- Tremella Mesenterica, Yellow Trembler
Image Credit: Willem Cramer

© willemsmicroscope.com

Deciphering the Intricacies of Intraductal Papillary Lesions: A Clinical Case Study

Medical mysteries often lead us to explore the depths of human health, unraveling the complexities that lie beneath seemingly ordinary symptoms. In this context, we delve into the intriguing case of a 50-year-old female patient who sought medical attention at a clinic due to a short-term right blood clotting issue. The subsequent investigation and analysis provided fascinating insights into the world of cytology and pathology, shedding light on the diagnostic challenges posed by intraductal papillary lesions.

Upon meticulous cytological study, a multifaceted tapestry emerged. Within a serous background, intricate formations of papillary groups captured the attention of the medical team. These groups exhibited a distinctive round shape, accompanied by a central nucleus, characterized by rough chromatin. The variability in cytoplasm density added another layer of complexity, as occasional peripheral microvacuolization was observed. A subset of these formations showcased a moruliform phenotype, further deepening the intrigue. The culmination of these observations led to the preliminary diagnosis of an intraductal papillary lesion.

Fig 1.- Pap Stains x 400 | Motic Panthera DL
Image Credit: Javier Torres

The journey of diagnosis did not stop at cytology; it extended into the realm of histology through surgical excision. The results of this surgical exploration uncovered a crucial piece of the puzzle – the presence of an intraductal papilloma. The juxtaposition of cytological and histological findings underscored the intricate nature of these lesions, and highlighted the importance of a multidisciplinary approach in unraveling their mysteries.

Fig 2.- Pap Stains x 400 | Motic Panthera DL
Image Credit: Javier Torres

Yet, the path towards a conclusive diagnosis was not straightforward. The diagnostic spectrum encompassed two distinct entities – papilloma and papillary carcinoma. The fine line between these entities blurred the boundaries of differentiation, complicating the diagnostic process. Despite the meticulous cytological examination, the certainty of differentiation remained elusive. This conundrum emphasized the need for a histological diagnosis, which holds true even in the presence of cellular atypia.


Fig 3 - Pap Stains x 400 | Motic Panthera DL

Image Credit: Javier Torres

The case of the 50-year-old female patient with an intraductal papillary lesion exemplifies the enigmatic nature of medical diagnoses. From the initial cytological study, with its intriguing papillary formations and variable cellular characteristics, to the subsequent histological unveiling of an intraductal papilloma, the journey was laden with challenges and discoveries. The diagnostic ambiguity between papilloma and papillary carcinoma served as a reminder of the intricate balance between art and science in the realm of pathology.

© Dr. Torres Gómez, Francisco Javier.

Pathology Service.

Virgen Macarena Hospital. Seville. Spain.








Friday, 4 August 2023

Oats (Avena sativa)

Oats have been cultivated for thousands of years. Traditionally the staple food in Northern Europe, it is a warm and sweet-tasting nutritious food, ideal for cold climates. For medicinal purposes, the whole plant is usually used, which is collected when the grains are ripe.

Traditionally, naturopaths have prescribed oats and oats straw tea as a tonic for nervous weakness, fatigue, and insomnia from arousal.


Oats are a separate group within the grass family. That also explains why oats are different and have specific nutritional properties that are not present in the three gluten-containing grains wheat, barley, and rye, and also differ from rice, for example.


Oats are a plant with many beneficial health properties:


Dietary fiber

Oats are best known for the beta-glucans it contains. Beta-glucans are unique soluble dietary fibers that lower cholesterol levels with a consumption of at least 3 grams per day in combination with other (healthy) foods that are low in saturated fat.


Oil

Oats are the only cereal that accumulates oil in the seed. Certain varieties can contain up to

10-15% oil. This oil consists of 80% unsaturated fatty acids, which means that oats contribute to lowering the risk of cardiovascular disease.


Protein

The oats protein is highly digestible and contains all essential amino acids, most of which are in large quantities. This allows oats to serve as a meat substitute. Because these proteins have a different amino acid composition than the gluten in wheat, barley and rye, they do not pose any problems for people who cannot tolerate gluten.


Starch

Oats starch digests slowly and completely. Oats therefore provide a gradual release of glucose into the blood (low glycemic index) Because of this, oats have the potential to help stabilize blood sugar in diabetes. In obese people, oats starch in combination with oats fiber can provide a long-lasting feeling of satiety, making weight management easier. Because of these properties, new health claims for oats are under development.


Vitamins, minerals and antioxidants

Oats are rich in vitamins and minerals. Of the phenolic compounds in oats, the avenanthramides in particular have an anti-oxidant activity and atherosclerosis and anti-inflammatory action.


Fig 1. - Avena sativa, oats straw c.s. | Motic BA410E PlanApo 40X | 

Moticam ProS5 Lite | Image credit: Willem Cramer


Fig 2. - Avena sativa, oats straw c.s. | Motic BA410E PlanApo 10X | 

Moticam ProS5 Lite | Image credit: Willem Cramer


Ref.: Wageningen University & Research (WUR) The Netherlands

© willemsmicroscope.com